A new model for co-creation of innovative measurement and analysis tools for translational health research

Lucas P.J.J. Noldus
ICEST, Beijing, China
June 2, 2014
Technical breakthroughs in brain and body measurement

- Optogenetics
- Electroencephalogram (EEG)
- Near-infrared spectroscopy
- Gesture recognition
- Video tracking
- Ultrasonic vocalizations
- Electroencephalogram
- Face reading
- Eye tracking
How to apply this new technology to battle societal challenges?

- **Drug discovery**: finding better medicines to cure neurological and psychiatric diseases
- **Eating behavior**: translational models for eating disorders and the prevention of obesity
- **Aging**: development of non-invasive tools for diagnosis and health monitoring
- **Ambient assisted living**: supporting independent living of elderly people
- **Product usability**: improved accessibility and ease of use for all age groups
- **Precision livestock farming**: sustainable animal husbandry based on individual health monitoring
The Dutch way: Public-private partnership

Collaboration between academic institutes, industry and end-users on the intersection of ICT, brain research and cognitive sciences

History:
- 2004: National Council for ICT Research
- 2009: National Initiative Brain & Cognition → Basic research
- 2009: ICT Innovation Platform Brain & Cognition → Practical application, valorization
- 2012: Foundation “ICT for Brain, Body & Behavior” (i3B Foundation)
i3B Foundation

- May 2012: i3B Foundation established
- June 2012: i3B business plan published (available in request)
- Sep 2012: Opening of i3B Lab
- Oct 2013: First i3B symposium
The i3B Living Lab

TECHNOLOGY PROVIDERS
- SMEs developing
- Sensors
- Actuators
- Data acquisition systems
- Computer vision systems
- Data analysis software
- Test apparatus

Role in i3B
- Technical research
- Product development

FIELD LABS
- *Example domains*
 - Consumer lifestyle
 - Intelligent lighting
 - Eating behavior
 - Sports
 - Psychiatric disorders
 - Ambient assisted living
 - Security/forensics

Role in i3B
- Testing in real-life context
- Scientific validation
- Practical validation
- Clinical validation

KNOWLEDGE PROVIDERS
- Universities
- Research institutes

Role in i3B
- Scientific research
- Technical research

END USERS
- Consumers
- Patients
- Hospitals
- Universities
- Consulting firms
- Automotive industry
- Aerospace industry
- Pharma industry
- Food industry
- Plant breeding industry
- Animal production industry

Role in i3B
- Large-scale deployment
- Practical use
Objectives

- User-driven creation, design and development of novel products
- Collaboration between high-tech companies, knowledge institutes and end users
- Facilities for collaborative research and development (co-location)
- Facilities for collaborative product integration, testing and validation
- Facilities for joint usage of reference data
- Facilities for demonstration and training
- Joint development of education and training programs
Combining science and technology to tackle societal challenges

Scientific disciplines
- Cognitive psychology
- Experimental psychology
- Consumer science
- Marketing science
- Neuroscience
- Physiology
- Behavioral biology
- Ergonomics
- Computer science
- Electronic engineering
- Mechatronics
- Industrial design
- Mathematics
- Statistics
- Artificial intelligence
- Communication science

Technologies
- Acoustical signal processing
- Physiological sensing
- Video technology
- Computer vision
- Video tracking
- Behavior recognition
- Gesture tracking
- Eye tracking
- Facial expression analysis
- Sensor fusion
- Multimodal data integration
- Complex event recognition
- Virtual reality
- Stimulation
- Brain-computer interface

Application domains
- Healthcare
- Food & nutrition
- Consumer behavior
- Psychology
- Public safety
- Workplace ergonomics
- Biomedical research
- Automotive
- Aerospace
- Gaming
- Animal husbandry
- Wildlife management
- Pest control
Participants

[Logos of various organizations]
i3B activities

i3B Research & Development
- Joint research program
- System integration and validation
- Hosting of researchers
- Administrative support of collaboration projects

i3B Facilities & Services
- Design and management of i3B Lab facilities
- Facilitating user-centered product development
- Recruitment of test subjects
- Usability testing
- Assistance with product certification
- Assistance with product localization
- Facilitating business development

i3B Communications
- Website, newsletter, blogs, leaflets

i3B Events
- i3B Café, annual symposium, conferences, thematic workshops, joint tradeshow exhibits
- Science, technology and trade missions

i3B Academy
- Education: training of employees and customers, certification
- Outreach: training in emerging markets
- Publication of handbooks, protocols
Benefits for participants

SME companies
- Access to knowledge, experience and assistance from fellow entrepreneurs
- Access to interns and graduate students
- Exposure of novel products and prototypes to press contacts, prospects and customers
- Administrative and managerial support for grant proposals and projects

Knowledge institutes
- Access to innovative SMEs for technology transfer
- Opportunities for students to develop their entrepreneurial skills
- Joint contract research for industry and government

End users
- One-stop shopping for expertise on ICT related to brain, body and behavior
- Access to network of high-tech SMEs that can respond quickly to business needs
- Flexible partnership opportunities, from ad-hoc usage of i3B labs to long-term agreements
- Contract research, development and engineering
Projects

Examples of i3B projects:

- SenseWell: Sensor technology for automated assessment of health and wellbeing
- FOCOM: Food and cognition model systems

Common elements:
- Consortium of public and private partners
- 50% funding from government, 50% from partners
Collaboration project

Automated Assessment of Health and Wellbeing

Integrating Sensor Technology with Brain and Cognition Research

2010-2014
Project objectives

- **Laboratory rat**: Animal model for diseases with social component (e.g. depression, schizophrenia, autism)

- **Goal**: Development of system for automated assessment of social behavior, communication and wellbeing

- **Needed**: Integrated measurement of behavior and physiology
 - Behavior: movement, body posture, cognition, social interaction
 - Acoustics: ultrasonic vocalizations
 - Physiology: body temperature
 - Multidimensional analysis
Project consortium

- **Utrecht University**: animal behavior, neuroscience, animal welfare
- **Wageningen University**: bioinformatics, statistics
- **Delft University of Technology**: sensor technology
- **Noldus Information Technology**: computer vision, software development, system integration
- **TeleMetronics Biomedical**: biotelemetry
- **Metris**: acoustics
- **Delta Phenomics**: in-vivo experiments, system validation
Measure – interpret – act

Interpretation – Step 1
- Behavior recognition
- USV classification
- Physiological event detection

Feature extraction
- Body position, shape, interaction
- Sonogram features
- Physiological signal features

Preprocessing
- Image processing
- Acoustical analysis
- Physiological signal analysis

Interpretation – Step 2
- Data fusion
- Pattern recognition
- Health / wellbeing assessment
- Incident detection

Output
- Alerts
 - Facility manager
- Stimulations
 - Animals
- Reports
 - Researcher

Measurement
- Accelerometer
- Video camera

Modality
- Food reward
- Sound
- Light
- Access to shelter

Rats in home cage
Video tracking
Automated behavior recognition

Image acquisition

Video tracking

Behavior classification

Feature extraction

shape

motion
Behavior + acoustics + physiology

Sonotrack controller
PhysioLinq controller
EthoVision
Sonotrack ultrasonic microphone
Video camera
Telemetry sensor
PhysioLinq base plate
Collaboration project

FOCOM

Food and Cognition Model Systems
2012-2015
Health trends
Objectives

Determining, understanding, predicting:

- Liking
- Choice
- Reward
- Eating behavior
- Cognition
- Wanting
- Aging
- Cognitive decline
- Health
Brain → Food

How does the brain influence our eating behavior?

How can we make the healthy choice the preferred choice?
Food → Brain

How does food influence our brain?

How can food ingredients improve brain functioning?
Ambitions

- Sensory attributes
- Marketing, communication
- Nutrition facts

Brain measurements

- Reward, liking
- Choice
- Mental health

Validation

- Traditional method: surveys, interviews, focus groups
- Drawback: highly subjective, unreliable data
- Needed: objective, quantitative research instruments
Project consortium

- **Radboud University**: brain and cognition
- **Wageningen University**: human nutrition, consumer behavior
- **University of Twente**: packaging design
- **Noldus Information Technology**: software development, eye tracking, system integration
- **Artinis Medical Systems**: near-infrared spectroscopy
- **TMSi**: electrophysiology
- **Green Dino**: virtual reality
- **Heinz**: consumer perception, new product development
- **Nizo Food Research**: sensory studies
- **Essensor**: consumer studies
Product 1: Food Experience Simulator
→ Testing of new, healthy food products
Universities
- fMRI studies: Can the brain distinguish between sugars and sweeteners?
- What happens in the brain if a person *thinks* that a product contains more or fewer calories?

Technology companies
- Translate fMRI findings into cost-effective measurement and analysis system, using EEG and fNIRS

Food companies
- Validation of new measurement systems in consumer tests
- Development of new food products
Which factors can we measure in the brain and where?
fMRI findings

Design
- **cued (expected) drink**
 - neutral
 - low-caloric
 - high-caloric

- **delivered drink**
 - demiwater
 - same drink (lemonade)

fMRI results: cue (expectation) effect
- high-caloric > low-caloric

Activates primary taste cortex, independent of wanting or liking measures

Can these fMRI findings be replicated in the Food Experience Simulator?
Food Experience Simulator design

- Translation of fMRI findings to stimulus delivery and response measurement system (Food Experience Simulator)
- Stimuli: visual, tactile, gustatory, olfactory
- Measurements: EEG, NIRS, ECG, GSR, gaze direction, facial expression
System architecture

Challenges

- Accurate synchronization of stimulus delivery
- Accurate synchronization of response measurement
- Event-related response interpretation
FOCOM product 2

Brain measurements
- Sensory attributes
- Marketing, communication
- Nutrition facts

Validation
- Reward, liking
- Choice
- Mental health

Product 2: Food Choice Simulator
Virtual supermarket for testing of new packaging design and product placement
Food Choice Simulator

- **Stimuli**: virtual supermarket with customizable shop layout and product placement and design
- **Measurements**: EEG, NIRS, ECG, GSR, gaze direction, navigation
Food Choice Simulator: Findings

Experiment
- 100 subjects
- Three conditions: real supermarket, virtual supermarket, pictorial display

First results
- Tendency to buy more products in lab conditions than in actual store
- More variety seeking in virtual environment
- Behavior in physical store was more closely resembled in virtual environment than in pictorial display

Conclusion
- Virtual store can be used to study a variety of relevant research questions and provide insightful information on consumer behavior
Wrapping up

- Innovation through multidisciplinary public-private cooperation: fruitful combination of science, engineering and domain expertise
- Public-private partnership enhances knowledge transfer from university to industry
- Integration of sensor technology, brain science and ICT leads to innovative new products for industry and health care
Thank you for your attention

Lucas P.J.J. Noldus, Ph.D.
Chairman

i3B Foundation
Nieuwe Kanaal 5
6709 PA Wageningen
The Netherlands
Phone: +31-317-473300
Email: info@i3b.org
Web: www.i3b.org