Chemical Looping Technology

by

L. S. Fan
Department of Chemical and Biomolecular Engineering
The Ohio State University
Columbus, Ohio 43210
U.S.A.

ICEST
June 2, 2014
Number of Publications with “Chemical Looping” in the Titles on Google Scholars
Combustion System

Schematic Diagram of a PCC-based Power Plant

Steam Out

Super heater

Preheater

Lime slurry

Economizer

Bag House or ESP

ID Fan

Stack

Coal Hopper

Coal Receiving

Ash Hopper

Water Injection

Ash/FGD Disposal

The Ohio State University
Gasification System

IGCC Efficiency: 33% with CO₂ control

Steigel and Ramezan, 2006
Chemical Looping Systems with CO₂ Generation or Separation

Two typical types of looping reaction systems

<table>
<thead>
<tr>
<th>Oxygen Carrier (Type I)</th>
<th>CO₂ Carrier (Type II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me/MeO, MeS/MeSO₄</td>
<td>MeO/MeCO₃</td>
</tr>
</tbody>
</table>

Reduction → Oxidization

- **Reduction**: CO₂/H₂O → Me/MeS → MeO/MeSO₄ → Fuel
- **Oxidization**: H₂/Flue Gas → MeO/MeSO₄ → Steam/Air

Carbonation → Calcination

- **Carbonation**: CO₂ Lean → MeCO₃ → CO₂ Rich
- **Calcination**: MeO → Heat → CO₂

Chemical Looping Systems with Non-CO$_2$ Generation

Syngas CO + H$_2$

chemical looping

CH$_4$ or other Carbonaceous Fuels

Chemicals

CH$_4$ or other Carbonaceous Fuels

Solar Energy/ Nuclear Energy

H$_2$O \rightarrow H$_2$ + O$_2$

chemical looping
CO₂ Capture from Fossil Energy – Technological Solutions

CO₂ Capture Targets:
- 90% CO₂ Capture
- <10% increase in COE (IGCC)
- <35% increase in COE (PC)

Source: José D. Figueroa, National Energy Technology Laboratory (NETL), USDOE
Comparison of OSU SYNGAS and Coal Direct Chemical Looping (CDCL) Processes with Traditional Coal to Hydrogen/Electricity Processes

Assumptions used are similar to those adopted by the USDOE baseline studies.
Exergy Analysis on Hydrogen Production

I. Contional Process
Exergetic Efficiency
\[
\frac{322.9}{407.7} = 79.2\%
\]

II. Chemical Looping Process
Exergetic Efficiency
\[
\frac{396.9}{(407.7 + 12.41)} = 94.5\%
\]
Economics of Chemical Looping Process

- Retrofit to conventional coal combustion process
- CDCL replaces existing PC boiler
 - Additional equipment for CO₂ compression and transportation required
- Techno-Economic analysis performed comparing CDCL to Base Plant with no CO₂ capture and 90% CO₂ capture via post-combustion MEA process

The CDCL process can be also used for high efficient hydrogen production
Oxygen Carrier Particle Development

Ellingham Diagram: Selection of Primary Metal
Recyclability of Pure Fe$_2$O$_3$

Recyclability of Composite Fe$_2$O$_3$

100 Cycle Pellet Reactivity

100 Cycle Pellet Strength
Structures of Iron Oxide

\[\text{FeO} \]

\[\text{Fe}_3\text{O}_4 \]

NaCl Type
- oxygen close-packed cubic pattern
- iron occupy all octahedral interstices

inverse Spinel Type
- octahedral interstices
- 1/2 occupation rate
- tetrahedral interstices
- 1/8 occupation rate
Core-Shell Particle Formation through Cyclic Gas-Solid Reactions

\[
4\text{Fe}_{(s)} + 3\text{O}_2_{(g)} \rightarrow 2\text{Fe}_2\text{O}_3_{(s)} \tag{1}
\]

\[
\text{Fe}_2\text{O}_3_{(s)} + 3\text{H}_2_{(g)} \rightarrow 2\text{Fe}_{(s)} + 3\text{H}_2\text{O}_{(g)} \tag{2}
\]

If the cyclic reactions proceed through Fe cation diffusion, core-shell structure forms, e.g. Fe2O3 + Al2O3.

If the cyclic reactions proceed through O anion diffusion, core-shell structure does not form, e.g. Fe2O3 + TiO2.

Al2O3 is only a physical support, while TiO2 alters the solid-phase ionic diffusion mechanism.
Fe$_2$O$_3$+Al$_2$O$_3$ VS Fe$_2$O$_3$+TiO$_2$

after 50 redox cycles

Raw TiO$_2$-Supported Particle

after 50 redox cycles

TiO$_2$-Supported Particle after 50 Redox Cycles
Evolution in Cyclic Binary Metal/Metal Oxide Systems

I. FeTi

Original cross section

Oxidation: cross section

Oxidation: surface with platelets and whiskers

EDS mapping of oxidized FeTi

Fe Ka1

Ti Ka1

O Ka1
Role of Support – Oxidation of Fe and Fe/TiO$_2$

DFT Calculation

Energy barrier for O$^{2-}$ can be reduced after support addition

Oxygen anion transfer in Wüstite and Ilemnite
Modes of CFB Chemical Looping Reactor Systems

Mode 1 - reducer: fluidized bed or co-current gas-solid (OC) flows

Mode 2 - reducer: gas-solid (OC) counter-current dense phase/moving bed flows

Chalmers University CLC System

OSU CLC System

Chemical Looping Reactor Design

$\text{FeO}_x \rightarrow \text{CO}_2/\text{H}_2\text{O}$

$\text{FeO}_y \rightarrow \text{CO}/\text{H}_2$

$x > y$

Fluidized Bed vs. Moving Bed

- Maximum Solid Conversion
 - Fluidized Bed: 11.11%
 - Moving Bed: 50.00%

- Gas Velocity
 - Fluidized Bed: U_{mfv}
 - Moving Bed: $< U_{mfv}$

- Particle Size
 - Fluidized Bed: Small
 - Moving Bed: Large

Graph showing PCO2/PCO vs. Temperature (C) for FeO, FeO, FeO, FeO.
<table>
<thead>
<tr>
<th>Particle Type</th>
<th>Ni</th>
<th>Cu</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Data</td>
<td>Lab</td>
<td>CFB 120</td>
<td>Lab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300W</td>
<td>25 kW</td>
<td>Moving bed + H₂</td>
</tr>
<tr>
<td>NiO/MgAl₂O₄</td>
<td>MgAl₂O₄</td>
<td>11784</td>
<td>CuO/Al₂O₃</td>
</tr>
<tr>
<td>NiO/MgAl₂O₄</td>
<td>MgAl₂O₄</td>
<td>1309</td>
<td>CuO/Al₂O₃</td>
</tr>
<tr>
<td>CuO/Al₂O₃</td>
<td>Fe₂O₃</td>
<td>MgAl₂O₄</td>
<td>Composite Fe₂O₃</td>
</tr>
<tr>
<td>Fe₂O₃/Al₂O₃</td>
<td>MgAl₂O₄</td>
<td>300W</td>
<td>Moving bed + H₂</td>
</tr>
</tbody>
</table>

| Air Flow Rate @1000 MWth and 10% Excess (mol/s) | 4000 – 10000 kg/s or 14,000 – 36,000 ton/hour |
| Volumetric Air Flow Rate at 1 atm and 900 ºC (m³/s) | < 3,000 ton/hour |

Particle Circulation Rate @ 1000 MWth (kg/s)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Reducer Solids Inventory (tonne)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Oxidizer Solids Inventory (tonne)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Medium Particle Size (μm)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Particle Density (g/cm³)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Ut (m/s)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Uc (m/s)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Use (m/s)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Typical Riser Superficial Gas Velocity (m/s)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Bed Area Turbulent Section (if Required) at 1 atm (m²)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Bed Area Required for Riser Section at 1 atm (m²)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Corresponding Riser Diameter (m)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour

Solids Flux at 1 atm (kg/m²s)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Number of Beds Needed given 8 m ID Riser	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Number of Beds Needed given 1.5 m ID Riser	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Ug for a Single 1.5 m ID Riser at 1 atm (m/s)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Ug for a Single 8 m ID riser at 1 atm (m/s)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Required Pressure for a Single 1.5m ID Riser (atm)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Solids Flux for a Single 1.5 m ID Riser (kg/m²s)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Required Pressure for a Single 8 m ID Riser (atm)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
Solids Flux for a Single 8 m ID Riser (kg/m²s)	4000 – 10000 kg/s or 14,000 – 36,000 ton/hour
OSU Chemical Looping Process Development

Scale

Time

Particle

Fixed Bed Tests

Bench Scale Tests

Sub-Pilot SCL Integrated Tests
25 kW_{th} OSU Sub-Pilot CDCL Demonstration for Coal Combustion

- Fully assembled and operational
- 500+ hours of operational experience
- 200+ hours continuous successful operation
- Smooth solid circulation
- Confirmed non-mechanical gas sealing under reactive conditions
- 13 test campaigns completed
200+ Hour Sub-Pilot Continuous Run - Sample Results

Once-Through Reducer Carbon Conversion Profile

- Continuous steady >90% carbon conversion from reducer throughout all solid fuel loading (5-25 kWth)
- <0.25% CO and CH₄ in reducer outlet = full fuel conversion to CO₂/H₂O
- <0.1% CO, CO₂, and CH₄ in combustor = negligible carbon carry over, nearly 100% carbon capture

Reducer Gas Concentration Profile

Reducer NOₓ/SOₓ Analysis

<table>
<thead>
<tr>
<th></th>
<th>Reducer</th>
<th>Combustor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOₓ (ppm)</td>
<td>190-1170</td>
<td>0 - 70</td>
</tr>
<tr>
<td>NOₓ (lb/MMBTU)</td>
<td>0.100 – 0.200*</td>
<td>~ 0</td>
</tr>
</tbody>
</table>

*Conventional PC Boiler NOₓ Generation = 0.2 – 0.5 lb/MMBTU

Combustor Gas Concentration Profile
Recent Unit Demonstration

- Over 300+ hours operation
- Average CO₂ purity generated throughout run > 99%
- >99.99% hydrogen purity at steady state
- Steady Pressure Profile throughout Test run

Differential Pressure Profile
Concluding Remarks

• Chemical Looping embodies all elements of particle science and technology - particle synthesis, reactivity and mechanical properties, flow stability and contact mechanics, gas-solid reaction engineering...

• OSU processes characterized by the moving bed reducer configuration are compact in design and high efficiency in operation. Success achieved in the operation of 200+ hour continuous sub-pilot CDCL run using coal and progress made in the on-going SYNGAS Chemical Looping pilot demonstration reflect the likelihood of commercialization of these technologies in the near future.
My Graduate Students and Research Associates

Ted Thomas
Himanshu Gupta
Puneet Gupta
Alissa Park
Mahesh Iyer
Luis Velazquez-Vargas
Bartev Boghos Sakadjian
Danny Wong
Fanxing Li

Shwetha Ramkumar
FuChen Yu
Fei Wang
Liang Zeng
Deepak Sridhar
Ray Kim
Dawei Wang
Elena Chung
Samuel Bayham

Zhenchao Sun
Mandar Kathe
William Wang
Songgeng Li
Andrew Tong
Nihar Phalak
Siwei Luo
Yao Wang
Niranjani Deshpande
Omar McGiveron
Ankita Majumder
Industrial Collaborators

- Clear Skies: Bob Statnick
- B&W: Tom Flynn, Luis Vargas, Doug Devault, Bartev Sakadjian, Tom Flynn and Hamid Sarv
- CONSOL Energy: Dan Connell, Richard Winschel, and Steve Winberg
- Air Products: Robert Broekhuis, Bernard Toseland
- Shell/CRI: Tom Brownscombe
- PSRI: Reddy Kerry, Ted Knowlton and Ray Cocco